On 2 - 3 Matrix Chevalley Eilenberg Cohomology

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Chevalley-Eilenberg and Cyclic Homologies

where H;(_) denotes the Lie algebra homology, HC*(_) cyclic homology, and A is an algebra with unit over a field of characteristic zero. In this paper we give an alternative proof of this theorem which does not involve Weyl's invariant theory for GL(C). We use this approach to compute Chevalley-Eilenberg homology in some interesting new cases. In Section 1, we begin by proving (in characteristi...

متن کامل

A note on the Chevalley-Eilenberg Cohomology for the Galilei and Poincaré Algebras

We construct in a systematic way the complete Chevalley-Eilenberg cohomology at form degree two, three and four for the Galilei and Poincaré groups. The corresponding non-trivial forms belong to certain representations of the spatial rotation (Lorentz) group. In the case of two forms they give all possible central and non-central extensions of the Galilei group (and all non-central extensions o...

متن کامل

Cartan-eilenberg Cohomology and Triples

In their classic book, Cartan and Eilenberg described a more-or-less general scheme for defining homology and cohomology theories for a number of different kinds of algebraic structure, using a general theory of augmented algebras. Later, in his doctoral dissertation, Beck showed how to use the theory of triples to derive a very different and completely general scheme for doing the same thing. ...

متن کامل

On the Eilenberg-moore Spectral Sequence for Generalized Cohomology Theories

We prove that the Morava-K-theory-based Eilenberg-Moore spectral sequence has good convergence properties whenever the base space is a p-local finite Postnikov system with vanishing (n + 1)st homotopy group.

متن کامل

Math 527 - Homotopy Theory Eilenberg-MacLane spaces and cohomology

Definition 1.2. Let n ≥ 1 and let G be an abelian group. The fundamental class of K(G, n) is the cohomology class ιn ∈ H (K(G, n);G) corresponding to idG via the isomorphism H n (K(G, n);G) ∼= HomZ(G,G). More explicitly, let ψ : πnK(G, n) ∼= −→ G be some chosen identification, and let h : πn (K(G, n)) ∼= −→ Hn (K(G, n);Z) denote the Hurewicz morphism, defined by h(α) = α∗(un), where un ∈ Hn(S) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Pure Mathematics

سال: 2015

ISSN: 2160-0368,2160-0384

DOI: 10.4236/apm.2015.514078